Data dimensional reduction and principal components analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Data Transformation in Principal Components Analysis.

Principal component analysis (PCA) is a popular dimension reduction method to reduce the complexity and obtain the informative aspects of high-dimensional datasets. When the data distribution is skewed, data transformation is commonly used prior to applying PCA. Such transformation is usually obtained from previous studies, prior knowledge, or trial-and-error. In this work, we develop a model-b...

متن کامل

Persian Handwriting Analysis Using Functional Principal Components

Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...

متن کامل

Exploring High-dimensional Data with Robust Principal Components

For high-dimensional data of low sample size it is difficult to compute principal components in a robust way. We mention an algorithm which is highly precise and fast to compute. The robust principal components are used to compute distances of the observations in the (sub-)space of the principal components and distances to this (sub-)space. Both distance measures retain valuable information abo...

متن کامل

Bayesian regression based on principal components for high-dimensional data

Motivated by a climate prediction problem, we consider high dimensional Bayesian regression where the number of covariates is much larger than the number of observations. To reduce the dimension of the covariate, the response is regressed on the principal components obtained from the covariates, and it is argued that the PCA regression is equivalent to the original model in terms of prediction....

متن کامل

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2019

ISSN: 1877-0509

DOI: 10.1016/j.procs.2019.12.111